Riemannian manifolds with uniformly bounded eigenfunctions
نویسندگان
چکیده
منابع مشابه
Riemannian Manifolds with Uniformly Bounded Eigenfunctions
The standard eigenfunctions φλ = ei〈λ,x〉 on flat tori Rn/L have L-norms bounded independently of the eigenvalue. In the case of irrational flat tori, it follows that L2normalized eigenfunctions have uniformly bounded L-norms. Similar bases exist on other flat manifolds. Does this property characterize flat manifolds? We give an affirmative answer for compact Riemannian manifolds with quantum co...
متن کاملUniformly Elliptic Operators on Riemannian Manifolds
Given a Riemannian manifold (M, g), we study the solutions of heat equations associated with second order differential operators in divergence form that are uniformly elliptic with respect to g . Typical examples of such operators are the Laplace operators of Riemannian structures which are quasi-isometric to g . We first prove some Poincare and Sobolev inequalities on geodesic balls. Then we u...
متن کاملGradient estimates for eigenfunctions on compact Riemannian manifolds with boundary
The purpose of this paper is to prove the L∞ gradient estimates and L∞ gradient estimates for the unit spectral projection operators of the Dirichlet Laplacian and Neumann (or more general, Ψ1-Robin) Laplacian on compact Riemannian manifolds (M, g) of dimension n ≥ 2 with C2 boundary . And we also get an upper bounds for normal derivatives of the unit spectral projection operators of the Dirich...
متن کاملCollapsed Riemannian Manifolds with Bounded Diameter and Bounded Covering Geometry
We study the class of n-Riemannian manifolds in the title such that the torsion elements in the fundamental group have a definite bound on their orders. Our main result asserts the existence of a kind of generalized Seifert fiber structure on M", for which the fundamental group of fibers injects into that of M". This provides a necessary and sufficient topological condition for a manifold to ad...
متن کاملLocal and Global Analysis of Eigenfunctions on Riemannian Manifolds
This is a survey on eigenfunctions of the Laplacian on Riemannian manifolds (mainly compact and without boundary). We discuss both local results obtained by analyzing eigenfunctions on small balls, and global results obtained by wave equation methods. Among the main topics are nodal sets, quantum limits, and L norms of global eigenfunctions. The emphasis is on the connection between the behavio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Duke Mathematical Journal
سال: 2002
ISSN: 0012-7094
DOI: 10.1215/s0012-7094-02-11113-2